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Abstract Magnetospheric plasma waves play a significant role in ring current and radiation belt dynamics,
leading to pitch angle scattering loss and/or stochastic acceleration of the particles. During a non-storm time
dropout event on 24 September 2013, intense electromagnetic ion cyclotron (EMIC) waves were detected
by Van Allen Probe A (Radiation Belt Storm Probes-A). We quantitatively analyze a conjunction event when
Van Allen Probe A was located approximately along the same magnetic field line as MetOp-01, which
detected simultaneous precipitation of>30 keV protons and energetic electrons over an unexpectedly broad
energy range (>~30 keV). Multipoint observations together with quasi-linear theory provide direct evidence
that the observed electron precipitation at higher energy (>~700 keV) is primarily driven by EMIC waves.
However, the newly observed feature of the simultaneous electron precipitation extending down to ~30 keV
is not supported by existing theories and raises an interesting question on whether EMIC waves can scatter
such low-energy electrons.

Plain Language Summary Energetic electrons can move from the magnetosphere into the Earth’s
upper atmosphere and cause chemical changes in the atmosphere leading to ozone reduction. The
present paper studies the physical process that causes such electron precipitation. When a charged particle
interacts with a plasma wave, its trajectory can be altered such that the particle falls into the upper
atmosphere, but this process occurs only for a specific range of particle energy. In this study, we use one
satellite (MetOp-01) orbiting in the upper atmosphere (altitude ~800 km) that can detect particle precipitation,
and a Van Allen Probes satellite, which provides wavemeasurements in the equatorial magnetosphere. During
the electron precipitation detected byMetOp-01, a Van Allen Probes satellite observed strong electromagnetic
ion cyclotron (EMIC) waves. Multipoint satellite observations together with quasi-linear theory provide a
direct evidence that the observed electron precipitation is primarily driven by EMIC waves. Another new
interesting finding is that the precipitation occurs not only for electrons at high energies (>~1MeV) but also at
low energies (down to ~30 keV). This newly observed feature is not supported by existing theories and
raises an interesting question whether EMIC waves can interact with such low-energy electrons as well.

1. Introduction

The relativistic electrons that populate the outer radiation belt are characterized by significant flux variations
due to the complex balance between transport, loss, and acceleration processes, especially during enhanced
geomagnetic activity (Reeves et al., 2003). The interaction between magnetospheric plasma waves and
charged particles, which results in particle acceleration or loss, strongly affects the ring current and radiation
belt dynamics (Thorne, 2010). The relativistic electrons that populate the highly dynamic outer radiation belt
can be lost mainly due to magnetopause shadowing and the subsequent outward radial diffusion (Shprits
et al., 2006; Turner et al., 2012), or efficient precipitation into the upper atmosphere caused by electromag-
netic ion cyclotron (EMIC) waves and other wave modes through pitch angle scattering into the loss cone
(W. Li et al., 2007; Shprits et al., 2017; Summers & Thorne, 2003; Thorne, 2010; Usanova et al., 2014).

EMIC waves are electromagnetic waves that typically occur in three distinct frequency bands below the gyro-
frequencies of hydrogen (fcH), helium (fcHe), and oxygen (fcO) (Erlandson & Ukhorskiy, 2001; Fraser et al., 2010).
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EMIC waves are excited by the injection of anisotropic hot ring current ions from the plasmasheet (Jordanova
et al., 2008) and are therefore more likely to be associated with enhanced geomagnetic activity (Fraser et al.,
2010). This excitation is more efficient in the overlap region of ring current ions and plasmasphere (Chen
et al., 2010; Pickett et al., 2010) and in dayside plumes (Morley et al., 2010).

Many studies have reported EMIC wave observations both in space (Anderson et al., 1992; Erlandson &
Ukhorskiy, 2001; Z. Li et al., 2014; Meredith et al., 2014; Min et al., 2012; Saikin et al., 2015; Zhang et al.,
2011) and at the ground (Engebretson et al., 2008; Usanova et al., 2008) in the Pc1 and Pc2 bands. H-band
EMIC waves dominate in the dawn sector, while He-band EMIC waves occur more frequently in the dusk sec-
tor (Min et al., 2012) but can span a broad magnetic local time (MLT) range for very intense EMIC waves
(Tetrick et al., 2017). Dayside EMIC waves are more spatially extended, while nightside EMIC waves tend to
be more localized and persistent, suggesting different generation mechanisms (Blum et al., 2017).

The EMIC waves interact with protons and electrons via cyclotron resonance and are more efficient in pitch
angle scattering than energy diffusion for electrons (Summers et al., 1998). Ring current protons with ener-
gies of tens of keV can be scattered into the loss cone (Cao et al., 2016; Summers et al., 2017; Xiao et al.,
2011) and produce proton aurora (Miyoshi et al., 2008; Yuan et al., 2010). The minimum energy (Emin) of elec-
trons resonating with EMIC waves depends strongly on various parameters, such as wave frequency spec-
trum, plasma density, and ion composition (W. Li et al., 2007; Meredith et al., 2014; Summers & Thorne,
2003). Precipitation of radiation belt electrons into the atmosphere due to resonant scattering has been
observed at relativistic energies (>~1 MeV) (Z. Li et al., 2014; Zhang et al., 2016). More recently, Hendry et al.
(2017) reported that the dominant energy of the peak precipitating electron flux in association with EMIC
waves is ~300 keV, and only ~11% of the precipitation events have the peak energy >1 MeV. Nonresonant
scattering due to EMIC waves is suggested to potentially lower Emin to a few hundred keV (Chen et al.,
2016). However, further investigation is necessary to fully understand the Emin of electrons, which can be
potentially precipitated into the upper atmosphere.

Despite past studies of energetic electron precipitation, direct evidence of electron precipitation driven by
EMIC waves as well as the associated energy of precipitating electrons is still lacking. An efficient method
is to combine measurements of EMIC waves in the radiation belt with electron precipitation in the upper
atmosphere during magnetic conjunction events, as shown in previous works (Blum et al., 2015; Clilverd
et al., 2015; Z. Li et al., 2014; Miyoshi et al., 2008; Rodger et al., 2015). In the present study, we focus on analyz-
ing the role of various magnetospheric waves in energetic electron precipitation during an interesting con-
junction event. This event is a non-storm time dropout “challenge” event, selected by the Geospace
Environmental Modeling focus group “Quantitative Assessment of Radiation Belt Modeling”.

2. Satellite Data

For the equatorial measurements, we use the twin Van Allen Probes (Radiation Belt Storm Probes, RBSP).
RBSP-A and RBSP-B both have orbital periods of 9 hr, a perigee of ~600 km and apogee of ~6 RE (Mauk et al.,
2013). We use the wave measurements from Electric and Magnetic Field Instrument Suite and Integrated
Science (EMFISIS; Kletzing et al., 2013) to analyze magnetospheric wave properties. The triaxial fluxgate mag-
netometer measures the vector magnetic field and low frequency waves below 30 Hz. Plasma density is
inferred from the upper hybrid resonance frequency detected by EMFISIS (Kurth et al., 2015). Particle fluxes
from the Energetic Particle, Composition, and Thermal Plasma Suite (ECT; Spence et al., 2013) are used to ana-
lyze the pitch angle and energy distributions of protons and electrons.

For the low altitude observations, we use the NOAA Polar Operational Environmental Satellites (POES) and
European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) MetOp satellite network
(Evans & Greer, 2004). These multiple spacecraft have altitudes of 800–850 km and periods of ~100 min,
covering different MLT sectors. Electron and proton fluxes are measured in different energy channels by
the Medium Energy Proton and Electron Detector (MEPED). In this study, we use the proton channel P1
(~30–80 keV) and the electron energy channels E1 (>~30 keV), E2 (>~100 keV), E3 (>~300 keV), and E4
(>~700 keV). E4 is a virtual channel obtained from the proton channel P6 (>~6.9 MeV), which is contami-
nated mainly by electrons above ~700–800 keV (Carson et al., 2013; Green, 2013; Rodger et al., 2010;
Yando et al., 2011). The E4 channel is more sensitive to relativistic electrons, given its effective energy at
~879 keV (Peck et al., 2015). At high latitudes, POES and MetOp satellites provide measurements
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approximately along the magnetic field line (0° telescope) and perpendicular to it (90° telescope), allowing us
to distinguish precipitating particles from trapped ones. Proton contamination in E1–E3 was removed using
the methods described in Peck et al. (2015) and corrected electron count rates are converted to fluxes
through the geometric factors in Table 3–2 in Green (2013).

3. Observations

Figure 1 shows the wave and particle dynamics measured by RBSP-A during a non-storm time event, when
Dst remained above �30 nT during the entire day of 24 September 2013 (not shown). From ~11:30 UT to
~13:00 UT, the plasma density remained above 100 cm�3 (Figure 1b), suggesting that RBSP-A was inside
the plasmasphere. Based on the wave power spectra (Figures 1c and 1d) together with wave ellipticity
(Figure 1e) and wave normal angle (Figure 1f), plasmaspheric hiss and magnetosonic waves were found to
be present, particularly after ~12:30 UT. In association with substorm activity, RBSP-A observed persistent

Figure 1. RBSP-A observations during 11:30–13:10 UT on 24 September 2013. (a) Kyoto AL index, (b) plasma density,
(c) electric and (d) magnetic power spectral density, (e) ellipticity and (f) wave normal angle, (g) EMIC wavemagnetic power
spectral density, and (h) proton fluxmeasured by the HOPE (Helium, Oxygen, Proton, Electron) mass spectrometer (Funsten
et al., 2013). The black dashed lines indicate the L-shell span 4.3–3.9 of RBSP-A during magnetic conjunction with
MetOp-01. Thewhite lines represent the electron gyrofrequency (fce; solid), 0.5fce (dash dotted), and 0.1fce (dashed). The black
lines indicate the lower hybrid resonance frequency (fLH; solid) and 0.5fLH (dash dotted). The yellow solid line corresponds
to fcH, the dashed red line is the He+ gyrofrequency (fcHe), and the black dotted line is the O+ gyrofrequency (fcO).
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EMIC wave activity from 11:30 UT to 13:00 UT (over the L-shell from ~3.8 to ~5.6 and the MLT from ~19.5 to
~21.2), mostly in the Helium band, but also partially crossing the helium and oxygen gyrofrequencies
(Figure 1g). The EMIC wave intensity was associated with the proton flux modulation (Figure 1h), especially
for the very isolated EMIC waves over 12:35–12:50 UT (Figures 1g and 1h).

We take advantage of the magnetic conjunction between RBSP-A and MetOp-01 (operationally, MetOp-B)
occurring during this isolated EMIC wave activity around 12:45 UT, at L ~ 4.1 and MLT ~ 20.7. During the con-
junction period (highlighted by the dashed black lines in Figure 1), EMICwave activity was strongest in the He-
band (root-mean-square wave amplitude Bw > 5 nT) but also exhibited modest wave power in the H-band
(Bw ~ 0.7 nT). Although plasmaspheric hiss and magnetosonic waves were also present, the wave amplitudes
(~6 and ~24 pT, respectively) were much weaker than those of the observed EMIC waves. The plasma density
inferred from the upper hybrid resonance line detected by EMFISISwas 492 cm�3 near the conjunction period.

The MetOp-01 observations during the conjunction with RBSP-A are shown in Figure 2. The two satellites
were in a very close magnetic conjunction, with differences less than ±0.5 in L-shell and ±0.5 hr in MLT

Figure 2. MetOp-01 observations during the magnetic conjunction with RBSP-A. (a) MLT and (b) L shell for RBSP-A (black)
and MetOp-01 (red); (c) proton flux at ~30–80 keV; and (d) electron flux for the energy channels >~30 keV (blue),
>~100 keV (black), >~300 keV (green), and > ~700 keV (red), after removing proton contamination. Double-dot dashed
lines are measurements from the 90°-pointing telescope, indicative of trapped particles; solid lines are from the 0°-pointing
telescope, indicative of precipitating particles. The boxed legend in (d) shows the ratio (R) of precipitating and trapped
particle fluxes averaged over the gray shaded region color coded for different electron energy channels.
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(Figures 2a and 2b) between 12:40 UT and 12:43 UT. Figures 2c and 2d show the observed proton and
electron fluxes in different energy channels. The fluxes from both the 0° and 90° telescopes are shown,
respectively, corresponding to precipitating (solid lines) and trapped (double-dot-dashed lines) particles.
The data shown in Figure 2 were averaged over 16 s from the full 2-s resolution to show the overall trend
more clearly.

During the conjunction period, simultaneous precipitation of tens of keV protons and electrons at all four
energy channels (from >~30 keV to >~700 keV) were observed, as highlighted by the gray shaded area in
Figure 2. The 30–80 keV proton flux measured by the 0° telescope increased sharply at 12:41:10 UT, and
reached close to the flux of trapped protons for ~90 s. Simultaneously, the flux of precipitating electrons at
energies>~700 keV (solid red line in Figure 2d) increased and almost approached the value of trapped elec-
trons. Although electron precipitation also occurred in energy channels at>~30,>~100, and>~300 keV, the
flux of precipitating electrons is noticeably lower than that of the trapped electrons. To quantify the level of
precipitation, the ratios of precipitating-to-trapped particle fluxes (R = J0/J90) were calculated by averaging
over the gray shaded area and marked in Figure 2d, color-coded for each energy channel. The ratio is larger
for >~700 keV electrons (R = 0.69), compared to the value for <~700 keV electrons (R ~ 0.4). Note that
although the R value for >~700 keV electrons appeared to remain close to 1 throughout the majority of
the plotted time interval, the R value before 12:41 UT and after 12:42 UT may not be reliable, since both pre-
cipitating and trapped fluxes remained low, probably close to the background. It is worthwhile to note that
particle precipitation extended to higher L-shells (up to ~5) even after the conjunction period (~12:42 UT),
especially for 30–80 keV; protons. This is consistent with the RBSP-A observation in Figure 1g, where EMIC
waves were also detected over an extensive region (L-shells from ~3.8 to ~5.6). Within the time interval of
the observed EMIC wave activity, the simultaneous precipitation of 30–80 keV protons and electrons at all
four energy channels (from >~30 to >~700 keV) was also detected by NOAA-16 at ~11:32 UT (MLT ~ 19.4,
L ~ 4.6, not shown) and MetOp-02 at ~11:47 UT (MLT ~ 20.1, L ~ 4.4, not shown), although the conjunction
with RBSP was not very tight (with an L-shell difference of ~1.5). In the present paper, we focus on the tight
RBSP-A/MetOp-01 conjunction, which allows us to quantify energetic electron precipitation driven by
magnetospheric waves observed near the conjugate magnetic equator.

To evaluate the effect of EMIC wave activity on electron dynamics, we calculate the phase space density (PSD)
for the fixed first (μ) and second (K) adiabatic invariants (Chen et al., 2006), based on the measured electron
fluxes from both Van Allen Probes. Figure 3 shows the evolution of PSD as a function of L* calculated based
on the TS04D model (Tsyganenko & Sitnov, 2005), for different combinations of μ and K, from 08:00 UT
(before the EMIC waves were detected) to 16:00 UT (well after EMIC wave detection). The color-coded lines
follow the trajectories of Van Allen Probes A and B. Note that the EMIC wave activity during the conjunction
was observed at L* ~ 3.8 (L ~ 4.1), highlighted by a gray shaded area in each panel. Interestingly, the PSD
profiles before (10:00 UT) and after (13:00 UT) EMIC wave observations show different features around
L* ~ 3.8, depending on the values of μ and K. For μ = 800 MeV/G (electron energies ~1.5–3 MeV at
L* ~ 3.8), the PSD exhibits little changes at K = 0.05 G0.5 RE (Figure 3b), but the PSD decrease tends to be more
evident at larger K (Figures 3e and 3h). Compared to μ = 800 MeV/G, electron PSD at μ = 2,000 MeV/G (elec-
tron energies ~3–5MeV at L* ~ 3.8) exhibits a more significant decrease across all K values. Such localized PSD
dips with μ and K dependence are unlikely related tomagnetopause shadowing together with outward radial
diffusion, but clear signatures of local pitch angle scattering loss, possibly driven by EMIC wave activity (Xiang
et al., 2017). EMIC waves are indeed found to bemore efficient in scattering higher energy (>~MeV) electrons
with low-intermediate pitch angles (Jordanova et al., 2008; Kersten et al., 2014; Meredith et al., 2003; Usanova
et al., 2014). Note that the localized PSD dips were extended to a broad region up to L* ~ 5, which is consis-
tent with EMIC wave activity observed over a wide range of L-shells (from ~3.8 to ~5.6), as shown in Figure 1g.
These results are in agreement with previous studies of the same dropout event (Su et al., 2016) and other
case studies as well (Shprits et al., 2017; Zhang et al., 2016).

For low μ (Figures 3a, 3d, and 3g), however, the PSD profile following the EMIC wave detection slightly
increases for low K. Such feature is consistent with an ongoing injection of electrons at energies below a
few hundred keV, also observed by the geosynchronous GOES-15 spacecraft during ~10–15 UT (not shown)
in the postmidnight sector. Injection and acceleration of electrons are more efficient for electrons at pitch
angles closer to 90°, as supported by a larger PSD increase at K = 0.05 G0.5 RE (corresponding to pitch angles
of ~70°) than that at K ≥ 0.2 G0.5 RE (corresponding to pitch angles below ~50°).
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4. Theoretical Estimates of Electron Pitch Angle Scattering

Using quasi-linear theory (Ni et al., 2015; Summers, 2005), we calculate the pitch angle scattering rate of the
observed waves during this conjunction event. Figure 4 shows the bounce-averaged pitch angle diffusion
coefficients due to the EMIC waves (Figure 4a: He-band; Figure 4b: H-band), plasmaspheric hiss (Figure 4c),
and magnetosonic (Figure 4d) waves. The diffusion coefficients are calculated based on the wave and plasma
parameters measured by RBSP-A between 12:44 and 12:48 UT, when the intense EMIC waves were observed
near the conjunction period. The wave frequency spectra were obtained from the satellite measurements
with the lower (upper) cutoff frequencies of 0.26 fcH (0.99 fcH) for H-band EMIC waves and 0.26 fcHe (0.99
fcHe) for He-band EMIC waves, respectively. We assume wave normal angles change from quasi-parallel near
the equator to more oblique up to 40° in latitude, following the latitudinally varying wave normal angle
model in Ni et al. (2015). The cold ion composition is assumed to be 70% H+, 20% He+, and 10% O+ (Lee &
Angelopoulos, 2014; Meredith et al., 2014), while the resonance numbers considered in the calculation are
between �5 and 5, including Landau resonance. The ratio of plasma frequency to electron cyclotron
frequency (fpe/fce), calculated based on the observation, is ~15.3.

Given the high EMIC wave amplitude, the pitch angle diffusion coefficients due to EMIC waves (Figures 4a
and 4b) are much larger than those driven by plasmaspheric hiss (Figure 4c) or magnetosonic waves
(Figure 4d). More specifically, pitch angle diffusion coefficients of He-band EMIC waves (Figure 4a) are typi-
cally stronger than those of H-band (Figure 4b), particularly at energies above several hundred keV. He-band
EMIC waves can scatter electrons above ~300 keV but are most efficient for electrons above 3 MeV, on a time-
scale of <~10 min. Interestingly, the minimum resonant energy of electrons that can be scattered by EMIC

Figure 3. The evolution of electron PSD as a function of L* based on the TS04D model by Tsyganenko and Sitnov (2005)
over 08:00–16:00 UT on 24 September 2013, color coded in UT, for different combinations of μ and K. Constant values
of μ are sorted in columns (from the left: 100, 800, and 2,000 MeV/G) and constant values of K are shown in rows (from the
top: 0.05 G0.5 RE, 0.20 G0.5 RE, and 0.30 G0.5 RE). The gray shaded regions indicate L* ~ 3.8, where the magnetic
conjunction occurred.
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waves extends to lower energy (tens of keV) for the H-band, although the scattering rate is much lower
than that at higher energies. In agreement with previous results (Kersten et al., 2014; Usanova et al., 2014;
Zhang et al., 2016), EMIC waves propagating quasi-parallel to the magnetic field are effective in scattering
electrons at low-intermediate pitch angles depending on energy. The EMIC waves can also cause the
electron scattering around 90° pitch angle via Landau resonance, but the loss of high pitch angle electrons
is inefficient due to the lack of scattering at intermediate pitch angles. The pitch angle diffusion
coefficients due to plasmaspheric hiss (Figure 4c) and magnetosonic waves (Figure 4d) are much weaker
than those caused by EMIC waves, indicating that these waves play a minor role in electron precipitation
in this dropout event.

To quantify the precipitation of electrons due to the observed waves, we use the total diffusion coefficients
(caused by EMIC, hiss, and magnetosonic waves) to estimate the normalized equatorial electron pitch angle
distribution after reaching a quasi-equilibrium state (formulae by Theodoridis & Paolini, 1967; W. Li et al.,
2013), during which process the electron flux decays exponentially due to pitch angle scattering loss (Ni
et al., 2013; O’Brien et al., 2014), while maintaining its shape as a function of pitch angle. Figure 4e shows
the electron flux normalized to that at 90° equatorial pitch angle as a function of equatorial pitch angle, color
coded by energy. The equatorial bounce loss cone angle at L ~ 4 is marked by a black dashed vertical line. The
gray shaded regions represent approximately the ranges of equatorial pitch angles corresponding to the
local pitch angles of electrons detected by the 0° and 90° telescopes onboardMetOp-01, considering the tele-
scope field of view of 15°. The loss cone becomes more filled as energy increases, showing that EMIC waves
are indeed more efficient in scattering electrons into the loss cone at higher energy. More specifically, pitch
angle scattering reaches the strong diffusion limit (R close to 1) at energies above several MeV. However, the
estimated ratios are much smaller than 0.1 for electrons below ~1 MeV and 0.1–0.7 for electrons above a few
MeV. These estimated R values are much smaller than those inferred from the MetOp-01 measurements in
Figure 2d at low energies (below ~1 MeV) but become comparable at high energies (above a few MeV).
Note that the direct quantitative comparison between the measured and estimated ratio is difficult, since
the electron fluxes measured by POES were integrated over a broad energy range. Nevertheless, the trend
of a higher ratio of precipitating-to-trapped electron fluxes at higher energies (>~700 keV) and a lower ratio
at lower energies (<~700 keV) is overall consistent with the MetOp-01 observations (Figure 2d), which clearly

Figure 4. (a–d) Bounce-averaged diffusion coefficients as a function of equatorial pitch angle and kinetic energy Ek for the
observed waves (amplitude Bw, central frequency fm). Ion composition is assumed to be 70% H+, 20% He+, and 10% O+

(Lee & Angelopoulos, 2014). Ratio of plasma frequency to electron cyclotron frequency (fpe/fce) is ~15.3. (e) Electron flux
normalized to that at 90° pitch angle as a function of equatorial pitch angle, color coded by energy (MeV). The dashed line
indicates the equatorial bounce loss cone angle at L ~ 4. The gray shaded regions represent the mapped range of the
equatorial pitch angles corresponding to the local pitch angles measured by the 0° (left) and 90° (right) telescopes onboard
MetOp-01.
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shows the highest ratio in the E4 channel (red lines, R = 0.69) compared to the ratios at lower energy channels
(blue, black, and green lines, R ~ 0.4).

5. Summary and Discussion

We quantitatively analyzed a magnetic conjunction event between RBSP-A and MetOp-01, which occurred
on 24 September 2013.

During the conjunction, RBSP-A detected strong EMIC waves inside the plasmasphere at L ~ 4.1 (L* ~ 3.8) and
MLT ~ 20.7, and MetOp-01 observed the simultaneous precipitation of >~30 keV protons, and energetic
electrons from >~30 to >~700 keV at the conjugate low altitude. The observed EMIC waves were strongest
in the He band (Bw ~ 5.1 nT) but also extended to the H band with a lower amplitude (Bw ~ 0.7 nT). Although
plasmaspheric hiss and magnetosonic waves were present, their intensities were much weaker than those of
EMIC waves.

The electron PSD evolution for this event shows that the electron loss was clearly localized over L* from ~3.8
to ~5, mainly affecting high-energy electrons (>~1.5 MeV). This is consistent with the EMIC wave activity,
which was also observed in a similar radial extent. The observed localized PSD dips are inconsistent with elec-
tron losses due to magnetopause shadowing and the subsequent outward radial diffusion but support elec-
tron loss through local pitch angle scattering primarily driven by EMIC waves at L > ~4 (Su et al., 2016).
Although MetOp-01 detected electron precipitation as low as ~30 keV, the PSD evolution based on the
RBSP-A measurement did not exhibit such loss below several hundred keV energies. These magnetospheric
observations might suggest that electron injection, associated with substorm activity (Turner et al., 2015),
dominates over the loss at such low energies, leading to a net small increase in electron PSD. These PSD
increases were observed only for low values of K (<0.20 G0.5 RE), in agreement with substorm injection, which
is more efficient for electrons at pitch angles closer to 90°.

We estimate the electron precipitation driven by EMIC waves, plasmaspheric hiss, and magnetosonic waves
using quasi-linear theory based on the observed wave and plasma parameters and show that EMIC waves are
efficient in scattering electrons only at low-intermediate pitch angles. In particular, He-band EMIC waves are
mainly responsible for providing strong pitch angle scattering for highly relativistic electrons (greater than a
few MeV) on a timescale of ~10 min, while H-band EMIC waves can scatter electrons into the loss cone at
lower energies (down to tens of keV) but on a much longer timescale (~day). The plasmaspheric hiss and
magnetosonic waves play minor roles in electron precipitation in this dropout event primarily due to their
much weaker intensity. The comparison between the observed and estimated ratio of precipitating-to-
trapped electron fluxes demonstrates that the trend of estimated ratios (larger ratio at larger energy
>~700 keV compared to lower energy <~700 keV) primarily due to EMIC waves is overall consistent with
observations. However, the pitch angle scattering rates calculated based on the quasi-linear theory signifi-
cantly underestimate electron precipitation at energies less than a few MeV. This may suggest that quasi-
linear theory cannot explain the EMIC-driven electron precipitation at lower energies.

The minimum energy of electrons that can be scattered by EMIC waves is previously believed to remain
above ~1 MeV (Kersten et al., 2014; Meredith et al., 2003). However, recent observations reported the poten-
tial presence of much lower minimum energy (approximately hundreds of keV) of electrons subject to EMIC-
driven pitch angle scattering (Clilverd et al., 2015; Hendry et al., 2017; Rodger et al., 2015; Yahnin et al., 2016,
2017). Our study newly reports a very interesting event, where the minimum energy of precipitating elec-
trons can potentially extend to unexpectedly low energy (>~30 keV), in association with strong EMIC waves
without the presence of any other magnetospheric waves effective in electron precipitation. Although the
recently proposed nonresonant interaction due to the spatial sharp edge associated with EMIC wave packets
may potentially explain the electron precipitation down to few hundred keV (Chen et al., 2016), it may still be
difficult to explain the electron precipitation down to ~30 keV. Our new finding offers credible insights into
understanding the interactions between the EMIC waves and energetic electrons. It will be interesting to
investigate how often EMIC waves are associated with electron precipitation with energies extending down
to ~30 keV, but it is beyond the scope of this pilot study and remains as future work. Although further inves-
tigations of multievent analysis, theory, and modeling are needed to fully understand the precipitation of
lower energy electrons, our study provides a new direct evidence of highly energetic electron precipitation
driven by EMIC waves using a fortuitous magnetic conjunction between RBSP-A and MetOp-01.
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